

Forming Processes	Characteristics of Sheet-Metal
	Forming Processes

Forming process	Characteristics
Drawing	Shallow or deep parts with relatively simple shapes, high production rates, high tooling and equipment costs
Explosive	Large sheets with relatively simple shapes, low tooling costs but high labor cost, low-quantity production, long cycle times
Magnetic-pulse	Shallow forming, bulging, and embossing operations on relatively low-strength sheets, requires special tooling
Peen	Shallow contours on large sheets, flexibility of operation, generally high equipment costs, process also used for straightening formed parts
Roll	Long parts with constant simple or complex cross-sections, good surface finish, high production rates, high tooling costs
Rubber	Drawing and embossing of simple or relatively complex shapes, sheet surface protected by rubber membranes, flexibility of operation, low tooling costs
Spinning	Small or large axisymmetric parts, good surface finish, low tooling costs but labor costs can be high unless operations are automated
Stamping	Includes a wide variety of operations, such as punching, blanking, embossing, bending, flanging, and coining; simple or complex shapes formed at high production rates; tooling and equipment costs can be high, but labor cost is low
Stretch	Large parts with shallow contours, low-quantity production, high labor costs, tooling and equipment costs increase with part size
Superplastic	Complex shapes, fine detail and close dimensional tolerances, long forming times (hence production rates are low), parts not suitable for high-temperature use

Characteristics of Metals Used in Sheet-Forming TABLE 16.2 Characteristics of Metals Important in Sheet-Forming Operations Characteristics of Metals Important in Sheet-Forming Operations Characteristics of Metals Important in Sheet-Forming Operations Characteristic of Metals Important in Sheet-Forming Operations Characteristic Importance Elongation Determines the capability of the sheet metal to stretch without necking and failure; high strain-hardening exponent (m) and strain-rate sensitivity exponent (m) are desirable trained in Typically observed with mild-steel sheets (also called L) üder's bands or stretcher strains),

		must be formed within a certain time after rolling	
	Anisotropy (planar)	Exhibits different behavior in different planar directions, present in cold-rolled sheets because of preferred orientation or mechanical fibering, causes earing in deep drawing, can be reduced or eliminated by annealing but at lowered strength	
	Anisotropy (normal)	Determines thinning behavior of sheet metals during stretching, important in deep drawing	
	Grain size	Determines surface roughness on stretched sheet metal, the coarser the grain-the rougher the appearance (orange peel), also affects material strength.	
	Residual stresses	Typically caused by nonuniform deformation during forming, results in part distortion when sectioned, can lead to stress-corrosion cracking, reduced or eliminated by stress relieving.	
	Springback	Due to elastic recovery of the plastically deformed sheet after unloading, causes distortion of part and loss of dimensional accuracy, can be controlled by techniques such as overbending and bottoming of the punch	
	Wrinkling	Caused by compressive stresses in the plane of the sheet, can be objectionable, depending on its extent, can be useful in imparting stiffness to parts by increasing their section modulus, can be controlled by proper tool and die design	
	Quality of sheared edges	Depends on process used; edges can be rough, not square, and contain cracks, residual stresses, and a work-hardened layer, which are all detrimental to the formability of the sheet; edge quality can be improved by fine blanking, reducing the clearance, shaving, and improvements in tool and die design and lubrication	
	Surface condition of sheet	Depends on sheet rolling practice; important in sheet forming as it can cause tearing and poor surface quality	
			17

- Mechanical, hydraulic, pneumatic, or pneumatic-hydraulic presses as the basic equipment
- ✓ Characteristics: design, features, capacity, and stiffness
- ✓ Press selection:
 - 1. Type of forming operation, the size and shape of dies
 - 2. Size and shape of workpiece
 - 3. Length of stroke of the slide, the number of strokes per minute

63

- 4. Number of slides (single, double, and triple-action)
- 5. Maximum force required
- 6. Type of mechanical, hydraulic, and computer controls
- 7. Features for changing dies
- 8. Safety features

